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2.  Scope of Work 
2.A  Abstract 

As one of the major emissions sources in the western U.S., smoke from wildfires is 
emitted to the atmosphere and transported downwind based on unique meteorological and 
topographical conditions1. Due to 
the difficulties of direct 
measurement, it remains a 
challenge to quantify the air 
quality impacts from wildfire 
smoke2, 3. For example, a small 
human-caused wildfire occurred 
in Parley Canyon, Utah on 
August 14, 2021. The smoke 
plume was released into the 
atmosphere (Figure 1(A)), 
thousands of homes were 
evacuated and the air quality in 
Salt Lake City on the following 
days was significantly worse than 
usual (Figure 1(C) and (D)).  
Around the same time, California 
wildfires (Figure 1 (B)) emitted 
smoke with large amounts of 
pollutants, also contributing to 
unhealthy air quality in Salt Lake 
City (Figure 1(C) and (D)). Both 
fires caused increased in ozone 
concentrations which indicates 
that secondary air pollutants are 
strongly affected by wildfire 
smoke. Though it is easy to tell 
that wildfire smoke has negative 
impacts on urban air quality from 
Figure 1, there is no tool to 
quantitatively measure wildfire 
impacts, nor to identify whether 
exceedance days are due to wildfire smoke or other emissions.  

Transport of wildfire smoke plumes is a complex process, especially in intermountain 
areas4, 5. Differentiating the impacts of wildfire smoke from other emissions is also difficult 
because the current observations are not able to directly identify the source of pollutant species. 
Many plume rise models have been used to represent the distribution of smoke in vertical layers 
and are implemented into the chemical transport model (CTM) framework to estimate smoke 
emissions and transport6-8. But the accuracy is limited by uncertainties in representing 
meteorological conditions, planetary boundary layer (PBL) conditions and fire intensity9, 10. 
Surface temperatures, wind speeds, atmospheric turbulence and other impact factors of complex 
mountain terrain make it challenging to accurately describe surface atmospheric dynamics during 

Figure 1 (A) Smoke plume from the wildfire in Parleys Canyon, Utah on 
14 Aug. 2021. (B) NOAA GOES-17 visible image of smoke from the 
Dixie Fire in California on 6 Aug.2021. (C) Daily PM2.5 and (D) 8hr 
ozone concentrations and the corresponding air quality index (AQI) in 
Salt Lake City for August 2021. Blue boxes in panels C and D refer to 
the two smoke events are shown in panels A and B  



	 3	

fire episodes. Surface meteorological conditions over mountains are not well estimated because 
the empirical formulas were developed for flat, uniform terrain11-13. As a result, the surface 
turbulence that impacts PBL and plume injection heights are not accurately represented in 
mountain areas. New models are necessary to improve the simulation of plume rise and better 
estimate downwind smoke concentrations14. The first scope (S1) of this work will develop a 
new plume rise model to estimate the plume injection heights for larger wildfires, which 
will improve simulations of smoke transport and downwind air pollution concentrations.  
 Air quality measured by many real-time monitoring networks15. With monitoring data, 
several areas along the Wasatch Front are classified as nonattainment areas by U.S. EPA16, 17. 
However, no technique can directly identify and quantify wildfire smoke impacts based on 
observations18, 19. Model simulations can be used to fill this gap. Many source apportionment 
techniques are available to investigate the relationship between high ozone pollution and wildfire 
activities during summer20-22. But complex interactions between wildfire emissions and the urban 
environment result in uncertainties in model performance during fire season23, 24. Major 
pollutants in wildfire smoke, NOx and VOCs, can significantly affect urban atmospheric 
chemistry as a result of the presence of wildfire smoke and interactions with urban emissions25-

27. Such changes include the switch of the dominant ozone precursor regime. Heat energy from 
smoke also changes urban climatology which can modify the photochemistry. Complex 
atmospheric urban physical and chemical dynamics make model simulation difficult to 
accurately describe wildfire smoke impacts on ambient air quality, therefore, further research is 
necessary to improve CTM simulations. The second scope (S2) of this work is to use CTM 
ensemble simulations to determine wildfire smoke contributions to local air quality using 
source apportionment techniques. 
 Pollutants from wildfire smoke, such as particulate matter (PM), nitrogen dioxides (NO2), 
volatile and semi-volatile organic compounds (VOCs/SVOCs), lead to primary and secondary 
pollutants during transport, resulting in significant negative impacts on local and downwind air 
quality once they are released to the atmosphere28. It had been shown that urban air quality 
decreased significantly due to the transport of aerosols from wildfires, leading to millions of 
dollars of economic loss29, 30. A fast-response, real-time tool is needed to provide not only 
current air quality levels but also identify the air quality impacts from wildfire smoke. Such a 
tool will help estimate the wildfire-related smoke exposure risk on human health and can be used 
for public health alerts during fire seasons. Additionally, this tool can be used in retrospective air 
quality analysis to assist in identifying which National Ambient Air Quality Standards (NAAQS) 
exceedance days have contributions from wildfire smoke. The last scope of this work (S3) is to 
develop a fast-response tool to identify NAAQS exceedance days with large contributions 
from wildfire smoke.  
 
2.B Basis and Rationale  

This work will address current uncertainties in investigating wildfire smoke impacts on 
ambient air quality in the western U.S. This work improves the simulation of vertical 
distributions of wildfire smoke over mountainous areas and improves method to quantify the 
wildfire smoke contributions to ambient air quality. A reliable, fast-response tool will be 
developed to better identify the NAAQS exceedances and the influence of wildfire emissions on 
ambient air quality. Specifically, this work will address the UDAQ goals and priorities of: 

1. Methods to improve modeling of wildfire events (transport, plume rise and emissions) 
2. Approaches for quantifying the contribution of wildfire emissions to local concentrations 
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3. Approaches for accurately identifying if locally-monitored exceedances are influenced by 
emissions from wildfire events. 

While the primary focus of this work is to address challenges associated with modeling wildfire 
smoke events, the modeling will also benefit the UDAQ priorities related to summertime ozone 
formation along the Wasatch Front. Specifically, the chemical transport modeling used to 
simulate the regional smoke transport will require testing and evaluation to ensure that the 
anthropogenic emissions and numerical weather prediction (NWP) modeling are correct. The 
source oriented CTM source apportionment can also identify which source categories are 
contributing to elevated ozone pollution along the Wasatch Front. Along the same lines, the 
results can also be used to test the NOx-VOC sensitivities by source category to identify 
uncertainties in the emissions inventory for the ozone precursor emissions.   
 
2.C Preliminary Results  

This work will leverage our previous and current research to improve regional smoke 
transport modeling in the western U.S. Our past research has investigated the utility of satellite 

aerosol products to estimate surface 
pollution concentrations31-34. Where 
heterogeneous surface characteristics, 
mountainous terrain, and complex 
aerosol mixtures (including wildfire 
smoke) impact the usability of satellite 
retrievals in this region. 

Currently, we are evaluating 
existing plume rise models and satellite 
plume injection height (PIH) products 
for large wildfires in the western U.S. 
Where, initial findings suggest that no 
plume rise model adequately captures 
the vertical distribution of smoke plume 
concentrations during these events. 

Preliminary results are shown in Figure 2, plume rise from two models35, 36 are compared with 
the PIH from satellite remote sensing37. The vertical distribution of wildfire emissions is critical 
to CTM performance as it significantly affects the mixing, dispersion and deposition downwind 
of the fires.  

The NWP-Emissions (2016 NEI)-CTM modeling platform has been successfully built on 
our high-performance computational system and applied to several studies. We have also built 
and evaluated a source oriented (CTM) source apportionment model. We used these atmospheric 
models to estimate the impact of wildfire emissions on PM and ozone pollution during the early 
stage of the 2016 Soberanes Fire in California. Figure 3 shows the air quality model simulation 
during the Soberanes Fire with/without fire emissions (i.e., brute-force source contributions). 
Daily average PM and ozone concentrations are shown and the contributions of wildfire smoke 
are also quantified using the brute force method. Throughout the western states, wildfire smoke 
account for increases of 2-4 ppb ozone and 2-3 µg/m3 PM2.5 during this event. The Soberanes 
Fire caused ~4 ppb increase in ozone and 3 µg/m3 PM2.5 in California.  

A source-oriented CTM was also successfully used to simulate air pollution during 2016 
summer in the continental U.S., shown in Figure 4. Figure 4 illustrates the simulation of ozone 

Figure 2. Daily plume height from satellite (MAIAC) and two 
plume rise models used in CTMs (Briggs & Sofiev). 
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source impacts during summer 2016. This simulation successfully estimates the ozone 
contributions due to background concentrations (BG) and different emissions scenarios (e.g., 
total emissions (EM) and wildfire emissions (Wildfire)). It also identifies the contributions from 
different ozone precursors (NOx (O3-N) and VOCs (O3-V)). NOx is the major dominant precursor 
while VOCs have a strong affect in south California. Wildfire emissions contributions to ozone 
formation range from 0.5 to 2 ppb throughout the domain. Though we successfully developed a 
validated the CTM source-oriented model, there are uncertainties associated with the chemical 
mechanisms and emission inventories. Thus, an ensemble approach would provide a more robust 
range of simulation results to investigate the impact of wildfire smoke plumes on ambient air 
quality concentrations.  

 
2.D Technical Approach  

This work will use NWP-CTM models to quantify the impacts of wildfire smoke, both 
locally and from long-range transport, on ambient air quality in Utah. The modeling domain will 
cover the western U.S. (12km horizontal resolution) and include a smaller 4km resolution 

Figure 3. Average daily air pollution concentrations of ozone and PM from CTM using the brute-force 
technique to identify smoke contributions during the 2016 wildfire season (California Soberanes Fire). 

Figure 4. Summer 2016 CTM source apportionment of ozone: BG=background ozone, EM= ozone from all 
emissions, O3-N and O3-V = contribution of NOx and VOCs. The right bottom panel represents Wildfires. 
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domain for wildfire case studies. Fifty vertical levels, with increased resolution from the surface 
up to 5km, will be used to improve the PBL modeling over mountains. Two fire seasons will be 
simulated (2016 and 2018) to provide source oriented source apportionment results for large 
wildfires upwind of Utah (2016 & 2018) and local Utah fires (2018). In addition to investigating 
the smoke impacts on air quality in urban areas, these results will be used to develop a fast-
response smoke identification tool. More recent years (e.g., 2020-2021) are not used for the 
atmospheric modeling due to the large uncertainties in the anthropogenic emissions from COVID 
related shutdowns and emissions changes. Because the fast-response tool does not rely on 
anthropogenic emissions estimates, it will be applied to a ten-year dataset (2011-2021) from 
monitors in Utah to quantify smoke impacts. 
 
2.D.1 Plume Rise Model (S1) 

Objective:  Develop a new plume rise model to simulate the plume injection height 
for large wildfire events typical of the western U.S. to improve simulations of smoke 
transport and downwind pollutant concentrations.  

Approach: The primary focus for Scope 1 (S1), is to implement an updated plume rise 
model in the CTM and emissions modeling framework using assimilated data from satellite 
retrievals. Fire radiate power (FRP) from the NOAA GOES series satellites will be used to 
improve the estimates of plume buoyancy based on its higher temporal resolution (e.g., every 
15min versus twice daily for MODIS)38. Plume rise algorithms rely heavily on the fire intensity 
to estimate the smoke plume buoyancy, so improved inputs for this parameter are critical to 
improving the plume rise model. Hourly GOES FRP will be used to estimate fire intensity and 
improve the plume rise algorithms in the Sparse Matrix Operator Kernel Emissions (SMOKE) 
model39. Meteorological conditions will be simulated with the Weather Research and Forecasting 
(WRF) model. Initial and boundary conditions will come from the North American Mesoscale 
(NAM) model40. WRF parameterizations will include Morrison 2-mom41 Microphysics scheme, 
long/shortwave radiation will use RRTM and Dudhia, respectively42, 43. The Pleim-Xiu land 
surface model, ACM2 PBL scheme and Pleim-Xiu surface layer physics will be used to model 
the surface turbulence and PBL44-47. We have used this WRF configuration previously to 
simulate summertime atmospheric conditions in the western U.S.31-34. The hourly FRP and 
meteorological conditions will be used to model the smoke plume rise. Sensitivity testing with 
existing plume rise models (e.g., Sofiev35, 36, Briggs36) will be done to select the algorithm that 
best represents fires in the western U.S. The final plume rise model will be implemented in 
SMOKE. 

Evaluation: The updated plume rise model will be evaluated based on data obtained 
from multiple sources including satellite products, monitoring stations and aircraft. Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) and NOAA GOES-16 will provide plume 
injection height products for evaluating the plume rise model performance. Observations from 
ground based LIDARs and aircraft field campaigns will also be used to evaluate the vertical 
distributions of smoke from the new plume rise model. The air pollution concentrations 
simulated from the CTM using the new model will also be evaluated using EPA monitoring data 
in the western U.S. to investigate the effects of the updated plume rise model.  

 
2.D.2 Wildfire Smoke Impacts on Air Quality (S2)  

Objective: Determine wildfire contributions to local air quality using an ensemble of 
atmospheric models and source apportionment techniques. 
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Approach: Numerical models will be applied in Scope 2 (S2), specifically, NWP and 
CTM models as well as emissions estimates using. Emissions from anthropogenic and biogenic 
sectors will be obtained from National Emission Inventory (NEI). Wildfire emissions will be 
obtained from different sources, such as Fire Inventory from NCAR	(FINN) and NEI, and will be 
modified based on satellite retrievals to improve their accuracy. Based on the model evaluation 
findings, modifications will be considered for anthropogenic and biogenic emissions if 
necessary. Meteorological conditions will be simulated using WRF (detailed in S1 above). For 
the CTM, the Community Multiscale Air Quality (CMAQ) model will be used to simulate the 
chemical and physical transport processes of wildfire smoke and investigate the impacts of 
wildfires on air quality. Several source sensitivity methods and source apportionment techniques 
will be applied to quantify the impacts of wildfire emissions on downwind air quality. The Brute 
Force (BF) method will be applied to estimate the direct wildfire impacts on primary PM. The 
Decoupled Direct Method (DDM) is implemented in the CMAQ model (CMAQ-DDM) to 
evaluate the sensitivity of responses of pollutant concentrations to perturbations in emissions. 
Semi-normalized sensitivity coefficients are calculated to indicate the impacts during 
atmospheric processes48. The Integrated Source Apportionment Method (ISAM) CMAQ model49 
tracks tags from different grouped classifications in emissions during both chemical and physical 
transport processes in the atmosphere and indicates the contributions of different sources. 
CMAQ-DDM and CMAQ-ISAM will be applied to estimate the wildfire impacts on both 
primary and secondary PM concentrations.  

An updated source-oriented CMAQ model, which involves reactive tracers (atomic 
oxygen, O(3P)) that are created in photochemical reactions tagged for ozone precursors that have 
been implemented in the SAPRC99 chemical mechanism, will be applied to specifically identify 
the ozone contribution from wildfire emissions. NO2 and NO are tagged for tracking the atomic 
oxygen through NOx-related reactions while reactive hydrocarbons (RH) are tagged for VOCs as 
shown in Equations 1-4 (E1-4), n represents different emissions sources. As a result, 
contributions from source n can be estimated. This improvement can be used to investigate not 
only the contributions from wildfires but also the potential effects of interactions between urban 
emissions with wildfire smoke plumes. 
𝑁𝑂#$

%&
𝑁𝑂$ + 𝑂(3𝑃)$	, 𝑛 = 1,2,3… ,𝑁                                                                                  (E1) 

𝑂(3𝑃)$ + 𝑂# → 𝑂4$, 𝑛 = 1,2,3… ,𝑁                                                                                        (E2) 

𝑅𝐻$ + 𝐻𝑂 → 𝑅𝑂#$ + 𝐻#𝑂, 𝑛 = 1,2,3… ,𝑁																																																																																								(E3) 

𝑅𝑂#$ + 𝑁𝑂 → 𝑁𝑂#$ + 𝑅𝑂$, 𝑛 = 1,2,3… ,𝑁                                                                            (E4) 

Current state-of-the-art atmospheric models have a significant amount of uncertainties in 
simulating the physics and chemistry of smoke plumes. Therefore, ensemble predictions will be 
conducted based on source analysis results from the above simulations to provide a more 
accurate estimation of the wildfire smoke source apportionment. In addition, the ensemble 
predictions will also use multiple chemical mechanisms to minimize the bias from the 
simulations. Mechanisms include the Statewide Air Pollution Research Center (SAPRC) 
chemical mechanism, Carbon Bond 6 (CB6), Regional Acid Deposition Model (RADM) and 
Regional Atmospheric Chemistry Mechanism (RACM). Uncertainties from emission inventories 
are also expected to be reduced using the same ensemble technique, incorporating emissions 
estimates from NEI and FINN. It should be noted here, that improvements from the first scope 
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(S1 above) will be applied in this scope to provide improved smoke plume simulations. 
Ensemble groups will be designed according to the information in Table 1 to minimize the bias 
from different sources and all quantify their potential uncertainties. 
Table 1 Scenario design for ensemble CTM simulations. 

Scenario ID Chem Mech* Emis Inv** SA Tech*** 

1 SAPRC-07, CB-6, 
RADM, RACM NEI Source-oriented CMAQ 

2 CB-6 NEI, FINN Source-oriented CMAQ 

3 CN-6 NEI BF, CMAQ-DDM, CMAQ-ISAM, source-
oriented CMAQ 

4 SAPRC-07, CB-6, 
RADM, RACM NEI, FINN BF, CMAQ-DDM, CMAQ-ISAM, source-

oriented CMAQ 
* Chem Mech: Chemical mechanism used in CTM 
** Emis Inv: Wildfire emissions inventory used in CTM 
*** SA Tech: Source apportionment technique 

Evaluation: Model simulations of air pollution concentrations will be evaluated using 
observations from the EPA monitoring networks (i.e., AQS) and local air quality monitoring 
programs (i.e., UDAQ). Data from meteorological networks (e.g., MesoWest) will be used to 
evaluate the local meteorology simulated from WRF. Statistical metrics will be applied to 
evaluate the WRF/SMOKE/CMAQ model performance. Based on the model evaluation, 
necessary adjustments will be made to WRF, emissions or CMAQ. The accuracy of the source 
apportionment results will be able to be directly evaluated because there are no available 
supportive data. However, the results from the updated source-oriented model will be compared 
with other source sensitive/apportionment results to qualitative evaluate the model performance. 
Final source apportionment ensemble simulations will be applied to assess the wildfire impacts 
on local air pollution concentrations.  
 
2.D.3 Exceptional Events Tool (S3)  

Objective: Develop a fast-response tool to identify NAAQS exceedance days where 
elevated ambient pollution concentrations have large contributions from wildfire smoke. 

Approach: Data assimilation using NWP-CTM simulation results and air quality 
observations will be applied in Scope 3 (S3) to train a fast-response tool that is can identify the 
contributions from wildfire smoke. The fast-response tool will use artificial neural network 
(ANN) and machine learning techniques and will be programmed in Python. This tool involves 
two models. The first model is to determine whether the PM2.5 and ozone NAAQS exceedances 
are associated with wildfire smoke. The second model is to quantify the impacts from wildfire 
emissions and smoke transport. In the first model, Random Forest (RF), a machine learning 
algorithm that is widely used in modeling air pollution issues, will be applied to solve regression 
and classification problems50-52. Source apportionment results from S2, satellite retrievals and air 
pollution observations during the 2016 fire season will serve as the training data to develop (i.e., 
train) the RF model. Training data will be used to construct decision trees that train the RF model 
and estimate the outcomes of wildfire smoke impacts. The number of decision trees and the 
explanatory variables are decided based on the corresponding dataset size. The trained RF model 
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will provide an index that classifies whether or not wildfire smoke contributions to the local air 
pollution concentrations.  

The second model will use ANN, which has successfully been used in air pollution 
studies, to quantify the air pollution impacts from wildfires53-55. This model will be trained based 
on the RF results for the NAAQS exceedances because the air quality on those days are 
associated with wildfire emissions. The ANN training data will include air pollution 
observations, source apportionment estimates (from S2), fire intensity, distance to fire, wind 
direction/speed, temperature and humidity. Sensitivity testing varying the number of nodes and 
will be done to determine the best configuration of the ANN model. Results will be evaluated, 
and the final best performing model will be used to establish the fast-response tool.  

Data from the local monitoring network and EPA will be used to provide air quality data, 
including concentrations of PM (PM10 and PM2.5), ozone, NOx, and CO, for this work. Fire 
information, including fire intensity (FRP), location (distance from monitoring station to fire), 
duration and fire emissions (PM, NOx, VOCs and CO), will be obtained from NEI and satellite 
retrievals. Meteorological conditions will come from surface stations. Simulations of the 2016 
and 2018 summertime air quality and source apportionment results (from S2) provide detailed 
wildfire contributions to local air quality for training the models. In this regard, half of the 
NAAQS exceedance days will be classified as the training dataset to train the models and the 
remaining will be used to test the RF & ANN model performance.  

Evaluation: Because there are no direct supportive data to evaluate smoke plume 
concentrations the source apportionment results from S2 will be used to evaluate the results from 
this novel, fast-response tool. Excluding training data, the 2016 and 2018 summer datasets will 
provide the air pollution contributions from wildfire smoke from the CTM source apportionment 
simulations. Testing with different sets of model configurations using RF and ANN will be done 
to develop this tool and the results from different scenarios will be compared with results from 
S2. The final model configuration will be used to establish the fast-response tool to classify 
exceedance days (retrospective analysis) and provide smoke alerts (near real-time analysis).  
 
2.E Expected Outcomes  

A new plume rise model is expected from the first scope (S1) to improve the vertical 
distribution of smoke plume concentrations for emission modeling. This updated plume rise 
algorithm will be implemented in the SMOKE and CMAQ models to reduce the biases when 
simulating wildfire smoke transport over mountain areas. Results from this objective will help to 
better estimate the air quality impacts in Utah during fire season.  
 The second scope (S2) is designed to provide a reliable simulation of summertime air 
quality in Utah and estimate the wildfire smoke contribution to the local ambient air pollution 
concentrations. These results can be used to evaluate the wildfire smoke impacts on human 
health, including the associated economic losses. In addition, the findings from this work will be 
used to support the next scope in our study.  

Scope three (S3) will develop a quantitative tool in Python to identify the influence of 
wildfire smoke on ambient pollutant concentrations using monitoring data. With improvements 
in the plume rise model and source apportionment results, a reliable tool that leverages machine 
learning techniques will be developed. The tool will identify wildfire impacts on local air quality 
by directly extracting observation data and wildfire information. This tool will be designed to 
provide real-time quick-response detections of wildfire smoke. 
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2.F Deliverables  
Completion of this work will help local analysis and alerts for wildfire smoke impacts on 

air quality. The first scope is to reduce biases in estimating smoke plume transport over 
mountains which is the dominant terrain in Utah. This achievement provides a new, tested plume 
rise model to better estimate wildfire emissions and detailed transport processes which can be 
used to forecast both short- and long-term effects from wildfire.  The second scope is to improve 
estimations of the source impacts of wildfire smoke to ambient air pollution in Utah. 
Achievement of this scope provides an effective source apportionment model to tracing both the 
PM and ozone formation due to wildfire emissions. This will help UDAQ better quantify 
wildfire smoke impacts on Utah air quality and support further estimates of health risks and 
economic losses from smoke. The fast-response tool from the last scope will help UDAQ by 
assisting with identifying wildfire smoke contributions to NAAQS exceedance days and aid in 
developing a public alert system for wildfire smoke.  Overall, this project will provide a deeper 
and clearer understanding of the wildfire smoke impacts on air pollution in Utah. 

This work will be completed in one year with quarterly reports and a final report to 
UDAQ. Simulation results and data will be freely available to anyone on the PIs website. Code 
modifications and tools developed will be publicly available on GitHub and shared with UDAQ. 
If additional data is requested, it will be made freely available to any interested party upon 
written request to the lead researcher within 10 years of project completion. The research 
personnel plan to present data in academic venues including workshops, publications and 
professional conference events. Including the Utah Air Quality: Science for Solutions 
conference. 

The PI has Utah High Performance Computing (CHPC) resources, including a large 
amount of data storage available (over 100TB). Funds are requested in the budget to purchase 
long-term data storage on CHPC to be dedicated solely to this project. This will provide reliable 
data storage and archiving for at least 10 years following the completion of this project. The 
information stored will primarily be model simulation and machine learning codes (which will 
also be made available via GitHub) and model simulation results.  
 
2.G Schedule  

This work will be completed in one year (7/01/2022-06/31/2023). A quarterly timeline 
(Q1-4) with the scopes (indicated by S), major deliverables, reports (indicated by R) and 
publication submission (indicated by P) are listed in Table 2. Results from this project will be 
presented at the Air Quality: Science for Solutions annual conference in Spring 2023. 
Table 2 Task Timeline (7/01/2022-06/31/2023) 

Deliverables Q1 Q2 Q3 Q4 

Data collection, preliminary analysis R1    

S1: Improve smoke plume rise model  R2   

S2: Quantify wildfire impacts on air quality   R3  

S3: Develop a wildfire smoke identification tool     R4/Final 

GitHub CTM code modifications (S1/S2)     

GitHub Wildfire smoke detection code (S3)     
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Science for Solutions conference presentation     

Prepare publication summarizing findings    P 

 
3. Budget  

A budget for the one year project is provided in Table 3, budget justification follows. 
Table 3 Detailed Budget Information  
 Scope 1 Scope 2 Scope 3 Total 
Personnel     
Kaiyu Chen  
@ $60,000/yr for 6 mo. (0.5 FTE) $10,000 $10,000 $10,000 $30,000 

Jingting Huang  
@ $31,000/yr for 3 mo. $7750 $0 $0 $7,750 

Fringe benefits  
Research Associate (52%)  
Grad Student (10%) 

$5,975 $5,200 $5,200 $16,375 

Supplies     
Hard disk storage    $450 
Other     

Publication fees    $1,500 

Science for Solutions Conf. Fee    $50 

Total direct costs    $56,125 

Total indirect costs (10%)    $5,613 
Total project cost    $61,738 

 
3.A Budget Justification  

University of Utah is on a 9-month academic and 3-month summer calendar schedule. 
Personnel 

Project PI, Dr. Heather Holmes, is not included in the budget but she will devote time to 
the project to advise the Research Associate and Graduate Student. This aligns with her current 
tasks and funded projects as an Associate Professor in Chemical Engineering at the University of 
Utah, therefore, she does not require salary support.  

Research Associate, Dr. Kaiyu Chen, is budgeted at 0.5FTE over the one year project 
with an annual salary of $60,000. Dr. Chen is currently working in the PIs research group on 
wildfire smoke and air quality modeling projects and is funded for the remainder of the FTE on 
those projects. Dr. Chen will devote 50% effort to this project to develop new software and code 
modifications for air quality modeling, biomass burning emissions, wildfire smoke transport 
modeling, and machine learning tools for air quality characterization. This includes 
modifications to the wildfire emissions inventory, adding the plume rise code in a chemical 
transport model and implementing the machine learning algorithm to forecast fire emissions and 
air quality.  
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PhD Student, Jingting Huang, is budgeted for three summer months with an annual 
graduate student salary of $31,000.  Jingting will devote 100% effort to this project over the 
three months to collect satellite remote sensing datasets related to wildfire and smoke 
characterization and test smoke plume rise models.  This includes collecting and combining all 
relevant satellite products, developing a new plume rise model, and working with Dr. Chen to 
add the plume rise code into the chemical transport model.   

Fringe Benefits 
Fringe benefit rates are 52% for research associates and 10% for graduate students. 

Other Direct Costs 
Supplies: Project specific supplies are budgeted at $450 to purchase hard disk storage.  
Publication Costs: Page charges for one publication is included at $1,500. 
Conference Fee: Fee for the Research Associate and Graduate Student to attend the Utah 
Air Quality: Science for Solutions conference, $25 for each. 

Total Direct Costs 
$56,125 

Indirect Costs/F&A 
UDAQ has a limit on the indirect cost rate, these were calculated at 10%; $5,613.  

 
4. Personnel Roles and Responsibilities 

The majority of this work will be led by Dr. Kaiyu Chen who is a Research Associate in 
the Department of Chemical Engineering at the University of Utah. Dr. Chen has more than five 
years of experience working with the WRF/CMAQ modeling system and has more than 12 
publications related to air pollution and source apportionment of PM and ozone. Specifically, for 
Dr. Chen’s Ph.D., he successfully applied the source-oriented CMAQ model to investigate the 
ozone pollution contribution to different emissions sources in the both continental U.S. and 
southeast U.S. He used these results to estimate the potential health risk to humans. Dr. Chen 
will apply his knowledge of air pollution and skills in modeling and analysis of pollution 
concentrations to achieve the goals of this project.  

Scope 1 will be completed with assistance from Jingting Huang.  Jingting is a Ph.D. 
candidate in the Department of Chemical Engineering at the University of Utah and has a MS in 
Atmospheric Sciences from the University of Nevada, Reno. Jingting has more than four years of 
experience using remote sensing products to study clouds, aerosols and wildfire smoke plumes.  
Her previous research used analytical radiative transfer models to quantify uncertainties in 
aerosol remote sensing products. Jingting will be responsible for developing the novel smoke 
plume rise model for this project, using on her skills and knowledge of atmospheric models and 
data assimilation of satellite remote sensing products.  

This project will be supervised by Dr. Heather Holmes who is an Associate Professor in 
the Department of Chemical Engineering at the University of Utah. The focus of her research 
group is both numerical and experimental air quality applications, including regional air quality 
modeling, transport and dispersion of atmospheric pollutants, and the impact of air pollution on 
human health. She has a strong track record of collaborating with biostatisticians and heath 
scientists to study the impacts of air pollution exposure. Dr. Holmes’ knowledge of numerical 
modeling and applications of satellite remote sensing products, especially in the western U.S., 
will provide expert guidance to this project. 
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